
Soft Comput
DOI 10.1007/s00500-016-2062-9

METHODOLOGIES AND APPLICATION

A new cuckoo search algorithm with hybrid strategies for flow
shop scheduling problems

Hui Wang1,2 · Wenjun Wang3 · Hui Sun2 · Zhihua Cui4 ·
Shahryar Rahnamayan5 · Sanyou Zeng6

© Springer-Verlag Berlin Heidelberg 2016

Abstract Cuckoo search (CS) is a recently developed
meta-heuristic algorithm, which has shown good perfor-
mance on many continuous optimization problems. In this
paper, we present a new CS algorithm, called NCS, for
solving flow shop scheduling problems (FSSP). The NCS
hybridizes four strategies: (1) The FSSP is a typical NP-
hard problem with discrete characteristics. To deal with the
discrete variables, the smallest position value (SPV) rule is
employed to convert continuous solutions into discrete job
permutations; (2) To generate high quality initial solutions,
a new method based on the Nawaz-Enscore-Ham (NEH)

Communicated by V. Loia.

B Hui Wang
huiwang@whu.edu.cn

Wenjun Wang
wangwenjun881@126.com

Hui Sun
sun_hui2006@163.com

Zhihua Cui
zhihuacui@gmail.com

Shahryar Rahnamayan
shahryar.rahnamayan@uoit.ca

Sanyou Zeng
sanyouzeng@gmail.com

1 School of Computer and Software, Nanjing University of
Information Science and Technology, Nanjing 210044, China

2 School of Information Engineering, Nanchang Institute of
Technology, Nanchang 330099, China

3 School of Business Administration, Nanchang Institute of
Technology, Nanchang 330099, China

4 School of Computer Science and Technology, Taiyuan
University of Science and Technology, Taiyuan 030024,
China

heuristic is used for population initialization; (3) A modified
generalized opposition-based learning (GOBL) is utilized
to accelerate the convergence speed; and (4) To enhance
the exploitation, a local search strategy is proposed. Exper-
imental study is conducted on a set of Taillard’s benchmark
instances. Results show that NCS obtains better performance
than the standard CS and some other meta-heuristic algo-
rithms.

Keywords Cuckoo search (CS) · Flow shop scheduling
problem · Makespan · Discrete optimization

1 Introduction

Flow shop scheduling problem (FSSP) plays an important
role in manufacturing systems. Good scheduling techniques
can significantly improve the production efficiency. To
achieve a good position in the market competition, more
effective scheduling methods are always needed. The per-
mutation flow shop scheduling problem (PFSSP) is one of
themost popular production scheduling problems, which can
be regarded as a simplified version of FSSP. In the PFSSP,
each machine can process only one job at a time. The given
machine sequence is same for all jobs, and the sequence
of jobs on machines is also the same. According to litera-
ture (Michael and David 1979), the PFSSP has been proved
to be NP-hard. For the significance in both theory and engi-

5 Department of Electrical, Computer, and Software Engineering,
University of Ontario Institute of Technology (UOIT),
2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada

6 School of Computer Science, China University of Geosciences,
Wuhan 430074, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2062-9&domain=pdf
http://orcid.org/0000-0001-8213-1626

H. Wang et al.

neering applications, different kinds of approaches have been
proposed to solve the PFSSP.

To solve scheduling problems, there are some classical
methods. In Johnson (1954), a heuristicmethodwas designed
for a simple PFSSP, which only consisted of two machines.
Bansal (1977) proposed a branch and bound (B&B) algo-
rithm to minimize the sum of completion times. Results
show that the B&B is very effective. In Croce et al. (2002),
an improved B&B was proposed for the two machine total
completion time. In Ignall and Schrage (1965), the B&Bwas
applied to some other flow shop scheduling problems.

In the past several years, some meta-heuristic algorithms
have been proposed to solve the flow shop scheduling prob-
lem. Liu et al. (2007) designed a memetic PSO algorithm
(called PSOMA) for the PFSSP with the objective to min-
imize the maximum completion time. In PSOMA, both
PSO-based search and local search operators are used to
achieve a balance between the global and local search.
Moreover, the PSOMA employs some adaptive local search
strategies to perform exploitation. Yang and Deb (2009) pro-
posed an alternate two phases particle swarm optimization
(called ATPPSO) to solve the FSSP. The ATPPSO designed
two processes named the attractive process and the repul-
sive process, which execute alternatively during the search.
Zhang et al. (2010a) presented an extended ATPPSO (called
I-ATPPSO), which combines the PSOwith genetic operators
and annealing strategy. In I-ATPPSO, each particle consists
of two phases, the attractive phase and the repulsive phase.
In Zhang et al. (2010b), a circular discrete PSO (CDPSO)
was applied to solve the FSSP. In CDPSO, a particle simi-
larity and swarm activity metric are defined. Results show
that CDPSO outperforms the other two algorithms. Tasge-
tiren et al. (2006) presented a discrete artificial bee colony
(ABC) forminimizing the total flow-time in permutationflow
shops. In Li and Yin (2012), another discrete ABC algo-
rithm with composite mutation strategies was proposed for
the PFSSP. According to the no free lunch theorem (Wolpert
and Macready 1997), no single mutation operation would
be appropriate for diverse instances of a particular prob-
lem. Therefore, a set of mutation strategies including swap,
insert, inverse, and adjacent exchange is utilized to avoid pre-
mature convergence. In Marichelvam (2012), an improved
hybrid cuckoo search (IHCS) algorithmwas proposed for the
PFSSP. The IHCS also used the NEH heuristic for popula-
tion initialization.Results show that the IHCSperformsbetter
than an ant colony optimizationmeta-heuristic (MHD-ACS).
Li and Yin (2013a) presented a hybrid CS (HCS) to solve
the PFSSP. To improve the local search ability, a fast local
search operator is used. Simulation results show the effec-
tiveness of the HCS. Differential evolution (DE) is another
population-based search algorithm, which has shown good
search abilities on many optimization problems (Cui et al.
2016; Lin et al. 2015a). Li and Yin (2013b) proposed a mod-

ified opposition-based DE (ODDE) to solve the PFSSP. In
ODDE, the NEH heuristic combined with random initial-
ization is employed. Moreover, opposition-based learning
(OBL) (Tizhoosh 2005) is used for population initialization
and generation jumping to improve the global search ability.
Similar to Li and Yin (2013b), Zhao et al. (2015) combined
the shuffled complex evolutionwithOBL to solve the PFSSP.
TheOBL aims to improve the population quality and acceler-
ate the convergence rate. There are 29 classical instances used
in the experiments. Simulation results show the effective-
ness of the proposed approach. Lin et al. (2015b) proposed
a hybrid backtracking search algorithm (HBSA) to solve
the PFSSP. In HBSA, some improved strategies including
crossover and mutation strategies and simulated anneal-
ing (SA) are employed to obtain good solutions. Results
show the efficiency of HBSA. In Rahman et al. (2015), a
real time strategy is designed to solve dynamic PFSSP. For
multi-objective flexible job shop scheduling problems, some
efficient multi-objective algorithms are required (Chen et al.
2010; Lin and Chen 2013; Liang et al. 2015). Karthikeyan
et al. (2015) designed a hybrid discrete firefly algorithm to
solve multi-objective flexible job shop scheduling problems.
Experiments on some famous benchmark instances show that
the proposed algorithm is feasible and effective approach.

Cuckoo search (CS) is a recently proposed optimization
algorithm developed by Yang and Deb (2009), which simu-
lates the obligate brood parasitism of some cuckoo species by
laying their eggs in the nests of other host birds. Preliminary
studies show that CS outperforms some existing algorithms
such as genetic algorithm (GA) and particle swarm optimiza-
tion (PSO) (Kennedy and Eberhart 1995). In this paper, we
propose a new CS algorithm with hybrid strategies, called
NCS, to solve the flow shop scheduling problem. In the NCS,
the smallest position value (SPV) rule is employed to convert
continuous solutions into discrete job permutations. To gen-
erate good initial solutions, a new method based on the NEH
is used for population initialization. A modified generalized
opposition-based learning (GOBL) on discrete variables is
used to accelerate the convergence speed. Moreover, a local
search strategy is employed to enhance the exploitation. The
proposed NCS is different from IHCS (Marichelvam 2012)
and HCS (Li and Yin 2013a). The IHCS only used the NEH
heuristic for population initialization. For HCS, the NEH
heuristic and a local search operator are employed. Experi-
mental study is conducted on a set of Taillard’s benchmark
instances. Results show that NCS obtains better performance
than the standard CS, IHCS, and some other meta-heuristic
algorithms.

The rest of the paper is organized as follows. The prob-
lem descriptions are formulated in Sect. 2. The standard CS
algorithm and its brief review are presented in Sect. 3. The
proposed CS algorithm is described in Sect. 4. Experimental

123

A new cuckoo search algorithm...

results are given in Sect. 5. Finally, the work is concluded in
Sect. 6.

2 Problem descriptions

The flow shop scheduling problem (FSSP) can be described
as follows. There aren jobs (i = 1, 2, . . . , n) andmmachines
(j = 1, 2, . . . ,m). Each job j will be sequentially processed
on m machines: 1, 2, . . . ,m. Assume that ti, j is the process-
ing time of job i on machine j , and Oj,k is the processing
operation of job j on machine k. Each machine can process
only one job at a time. The sequence in which the jobs are to
be processed is the same for each machine. A schedule can
be represented as a permutation π = {π1, π1, . . . , πn} of
jobs which can be mapped into a schedule defining comple-
tion times for all operations. The completion time C j for
each job j is the completion of the last operation Oj,m ,
C j = C j,m . The FSSP aims to minimize the makespan in
this paper. Therefore, the FSSP can be defined by (Zhang
and Sun 2009)

C1,1 = t1,1, (1)

C j,1 = C j−1,1 + t j,1, j = 2, . . . , n, (2)

C1,k = C1,k−1 + t1,k, k = 2, . . . ,m, (3)

C j,k = max{C j−1,k,C j,k−1},
j = 2, . . . , n, k = 2, . . . ,m, (4)

Cmax = max{Cn,m}, (5)

f = max{Cmax}. (6)

Thus, the objective of this paper is to find a job permutation
π to minimize the function f .

3 Cuckoo search

Optimization problems arise in a variety of engineering
fields, such as structural design, scheduling, economic dis-
patch, and portfolio investment. With the rapid development
of economy, the optimization problems become more and
more complex, and more effective optimization algorithms
are required. In the past several years, different kinds of
nature-inspired optimization algorithms have been designed,
such as PSO (Kennedy and Eberhart 1995), firefly algorithm
(FA) (Yang 2010), artificial bee colony (ABC) (Karaboga
2005), ant colony optimization (ACO) (Dorigo et al. 1996),
and cuckoo search (CS) (Yang and Deb 2009). Among
these algorithms, CS is a recently developed swarm intel-
ligence algorithm, which has shown good performance on
many optimization problems (Yang and Deb 2010; Basu and
Chowdhury 2013).

Algorithm 1: The Standard CS
1 Randomly initialize a population of N host nests;
2 Calculate the fitness value of each initial solution;
3 while t ≤ MaxGen do
4 Get a cuckoo (say i) randomly by Lévy flights;
5 Evaluate the fitness value of fi;
6 Randomly choose a nest among N (say j);
7 if fi is better than fj then
8 Replace j by the new solution;
9 end

10 Abandon a fraction (pa) of worse nests, and build ones
via Lévy flights;

11 Update the global best solutions;
12 t++;
13 end

In theCS, a new solution Xi for the i th cuckoo is generated
by the following Lévy flight (Yang and Deb 2009).

Xi (t + 1) = Xi (t) + α ⊕ Lévy, (7)

where α > 0 is the step size which should be related to
the scales of the problem of interest. The product ⊕ means
entry-wisemultiplications. The Lévy flight is a randomwalk,
in which the step length is determined by Lévy distribu-
tion (Yang and Deb 2009).

Lévy ∼ u = t−λ, (1 < λ < 3), (8)

It is known that the Lévy distribution has an infinite vari-
ance with an infinite mean. Therefore, the consecutive jumps
of a cuckoo form a random walk process which obeys a
power-length distribution with a heavy tail (Yang and Deb
2009). Some new solutions should be generated by the Lévy
walk around the global best solution found so far. This will
accelerate the local search. However, a substantial fraction
of the new solutions should be generated by far field ran-
domization and whose locations should be far enough from
the current best solution. This is helpful to avoid falling into
local optima (Yang and Deb 2010).

The basic steps of the CS algorithm can be summarized
in Algorithm 1, where N is the population size, f is the
fitness evaluation function, pa ∈ [0, 1] is the probability
of discovering an alien egg, t is the generation index, and
MaxGen is the maximum number of generations.

Since the development of CS, it has been applied to
different optimization problems. Bhandari et al. (2014) pro-
posed a hybrid CS for image processing (Chen et al. 2015;
Li et al. 2015; Xia et al. 2014a, b; Zheng et al. 2015). In
Behnasr and Jazayeri-Rad (2015), CS was used to optimize
the robust data-driven soft sensor based on support vec-
tor regression (Gu et al. 2015a, b). Navimipour and Milani
(2015) applied CS to cloud computing (Fu et al. 2015; Ren
et al. 2015; Xia et al. 2015). In Sajwan et al. (2014), CS
and other swarm intelligence algorithms are used for web
usage mining in recommender system (Ma et al. 2015). Goel
et al. (2013) proposed a biogeography basedCS algorithm for

123

H. Wang et al.

classification (Liang et al. 2016; Wen et al. 2015). In Dhivya
and Sundarambal (2011), CS was used to aggregate data in
the sensor network (Shen et al. 2015; Xie and Wang 2014).
In Elazim and Ali (2016), CSwas used to optimize the power
system stabilizers. Compared to GA and the conventional
method, CS achieved better performance. Naik and Panda
(2016) designed an adaptive CS (ACS) for face recognition.
The ACS is almost parameter free, because it eliminates the
Lévy step. Huang et al. (2015) proposed a hybrid CS called
TLCS, which introduced teaching-learning into CS. Simu-
lation study on some well-known engineering optimization
problems show that the TLCS is very effective. Djelloul
et al. (2015) proposed a quantum based CS to solve the
graph coloring problem (GCP). Experiments show that the
new approach obtains encouraging results on the standard
DIMACS benchmark.

4 Proposed approach

In this section, we present a new CS (NCS) algorithm for the
flow shop scheduling problem. The detailed descriptions of
the NCS are given as follows.

4.1 Solution representation

The standard CS algorithm was originally designed to solve
continuous optimization problems, while the FSSP is a dis-
crete problem. Thus, the standard CS cannot be directly used
to solve the FSSP. To apply CS to FSSP, one of the key issues
is to construct a relationship between real number solutions
and job sequences. To address this issue, some different solu-
tion representation methods have been proposed, such as the
largest ranked value (LRV) (Liang et al. 2011), the smallest
position value (SPV) (Tasgetiren et al. 2006), and the largest
order value (LOV) (Qian et al. 2008).

In this paper, the SPV rule is utilized (Tasgetiren et al.
2006). The SPV is a simple method, which has been suc-
cessfully applied to various production scheduling problems.
Let each index of the dimensions of a continuous solution
represent a job from J = {1, 2, . . . , n}. Then, n indexes
denote n different jobs. Assume that X = {x1, x2, . . . , xn}
is a continuous solution. By sorting the position values of X
in ascending order, a job permutation π is obtained. Figure 1
presents an example of the SPV rule.

4.2 Population initialization

Population initialization plays an important role in the per-
formance of CS and other stochastic search algorithms. To
achieve a good initial population, a new method based on
Nawaz-Enscore-Ham (NEH) (Nawaz et al. 1983) heuristic is
employed The NEH heuristic is a famous method for solving

xj

xj

π

π

j

x

xj

Fig. 1 An example for the SPV rule

flow shop scheduling problems (Li andYin 2013a;Marichel-
vam 2012). The main idea of the NEH heuristic is that the
high processing time on all machines should be scheduled as
early in the sequence as possible. The detailed steps of the
NEH are listed as follows (Nawaz et al. 1983).

– Calculate the total processing time of each job on all m
machines. Sort the jobs in terms of the total processing
time in non-increasing order. Then, we get a permutation
π = {π1, π2, . . . , πn};

– The first two jobs of π are taken and the two partial pos-
sible permutations of these two jobs are evaluated. Then,
the better partial permutation is chosen as the current one.

– Take the job π j , j = 3, 4, . . . , n, and find the best partial
permutation by inserting it in all possible positions of
the partial permutation of jobs that have been already
scheduled. The best permutation would be selected for
the next iteration.

Based on the above steps, we can get a good job permu-
tation π . To suitable for the CS algorithm, the π should be
converted to a continuous solution X . Let π be a job permu-
tation, and X = {x1, x2, . . . , xn} be a continuous solution.
Then, the conversion can be defined by

xπ j = (xmax − xmin)

n
· j − xmax, j = 1, 2, . . . , n, (9)

where π j is the j th job for a given job π , n is the number
of jobs, xmax = 1, and xmin = −1. As seen, x1 is the small-
est value among {x1, x2, . . . , xn}, while xn is the largest one.
According to the SPV rule, the dimension index of the small-
est value achieves the first job in π .

The NEH heuristic can only generate one initial solution.
To generate multiple initial solutions, a new method is used

123

A new cuckoo search algorithm...

by the suggestions of Li and Yin (2013a). In the initial pop-
ulation, the 10% · N solutions are generated by the NEH
heuristic, and the rest of the 90% · N solutions are randomly
initialized.

4.3 Generalized opposition-based learning

Opposition-based learning (OBL) (Tizhoosh 2005) is an
effective method for accelerating the convergence speed of
population-based search algorithms. It has been successfully
applied toDE (Rahnamayan et al. 2008) andPSO (Wang et al.
2011b). Themain idea ofOBL is the simultaneous evaluation
of the current solution and its corresponding opposite solu-
tion to achieve abetter approximationof the current candidate
solution. However, the GOBL is usually used for continuous
optimization problems. In this paper, we apply it to discrete
optimization problems.

Algorithm 2: The GOBL Operation for FSSP
1 Update [aj(t), bj(t)] according to Eq. 12;
2 for i = 1 to N do
3 Generate a random value for k;
4 Generate x̌i according to Eq. 13;
5 Apply the SPV to convert the x̌i into a job permutation

π̌i ;
6 Calculate the makespan of the π̌i ;
7 end
8 Select N fittest job permutations from all π and π̌ as the new

current population;

Let x be a continuous solution in the population. Its oppo-
site solution x̌ is defined by (Rahnamayan et al. 2008)

x̌ = a + b − x, (10)

where x ∈ [a, b].
Based on theOBL, an extended version called generalized

OBL (GOBL) is proposed as follows (Wang et al. 2011a).

x̌i, j = k · [a j (t) + b j (t)] − xi, j , (11)

a j (t) = min(xi, j (t)), b j (t) = max(xi, j (t)), (12)

i = 1, 2, . . . , N , j = 1, 2, . . . , n,

where xi, j is the j th vector of the i th solution, x̌i, j is the
opposite vector of xi, j , a j (t) and b j (t) are the minimum
and maximum values of the j th dimension in current search
space, respectively, and N is the population size.

The main steps of GOBL for flow shop scheduling
problem are described in Algorithm 2, where π̌ i is the cor-
responding job permutation of the opposite solution x̌i .

4.4 Local search

Some previous studies have proven that local search is
helpful to obtain good solutions for solving scheduling prob-
lems (Wang and Tang 2012; Mladenović and Hansen 1997;
Tasgetiren et al. 2007). There are some popular local search
operators, such as swap, insert, and inverse. In this paper,
the above three local search operators are employed. Based
on these operations, we can conduct local search to achieve
more accurate solutions.

For the swap, two jobs at different positions w and z in
solutionπ are exchanged.By conducting the operation, a new
solution π ′ = swap(π,w, z) is obtained. Figure 2 illustrates
the process of the swap operator.

For the insert, a job in solution π is removed from its
current position w and inserted into a different position
z. After this operation, we can get a new solution π ′ =
insert(π,w, z). Figure 3 describes of the insert operator.

For the inverse, jobs between twodifferent positionsw and
z in solution π are inversed. we can obtain a new solution
π ′ = inverse(π,w, z) after this operation. Figure 4 presents
the process of the inverse operator.

The main steps of the proposed local search are inspired
byWang and Tang (2012), which are described in Algorithm

w-1... w w+1 z-1... z z+1 ...

exchange

w-1... z w+1 z-1... w z+1 ...π

π

'

Fig. 2 The swap operator used in the local search

w-1... w w+1 z-1... z z+1 ...

w-1... w+1 z-1... z z+1 ...

insert

w

π

π'

Fig. 3 The insert operator used in the local search

w-1... w w+1 z-1... z z+1 ...

inverse

w-1... z+1 ...w...z z-1 w+1

π

π'

Fig. 4 The inverse operator used in the local search

123

H. Wang et al.

3, where π� is the global best job permutation found so far.
The computational time complexity of local search operators
is very high. So, we only conduct the local search on the
global best job permutation.

Algorithm 3: The Local Search Operation
1 Let π� be the global best job permutation found so far;
2 Set π = π� and q = 1;
3 while q ≤ n × (n − 1) do
4 h = 1;
5 while h ≤ 3 do
6 if h == 1 then
7 Randomly select two different positions w and

z;
8 Conduct the operation π′ = swap(π, w, z);
9 end

10 if h == 2 then
11 Randomly select two different positions w and

z;
12 Conduct the operation π′ = insert(π, w, z);
13 end
14 if h == 3 then
15 Randomly select two different positions w and

z;
16 Conduct the operation π′ = inverse(π, w, z);
17 end
18 if f(π′) < f(π) then
19 π = π′;
20 h = 1;
21 end
22 else
23 h++;
24 end
25 end
26 if f(π) < f(π�) then
27 π� = π;
28 end
29 q++;
30 end

4.5 Framework of NCS

Algorithm 4: The Proposed NCS
1 Initialize population based on the modified NEH method;
2 while t ≤ MaxGen do
3 Generate Xi by Lévy flights according to Eq. 7;
4 Convert Xi to a job permutation πi based on the SPV

rule;
5 Calculate the makespan of the π̌i ;
6 Randomly choose a solution (say Xj) from the

population, and its corresponding job permutation is πj ;
7 if πi is better than πj then
8 Replace Xj by the new solution Xi;
9 Replace πj by the new job permutation πi ;

10 end
11 Abandon a fraction (pa) of worse nests, and build ones

via Lévy flights;
12 Convert the new solution to job permutations and

calculate their makespan;
13 Update the global best solutions;
14 if rand(0, 1) ≤ po then
15 Execute the GOBL operation (Algorithm 2);
16 end
17 Execute the local search (Algorithm 3);
18 Update the global best solutions;
19 t++;
20 end

The main steps of the proposed NCS algorithm are
described in Algorithm 4, where rand(0, 1) is a random
value in the range [0, 1], po is the probability of the GOBL,
and MaxGen is the maximum number of generations.

5 Experimental study

5.1 Experiment setup

In this section, we present an experimental study on the
performance of the proposed approach. Experiments are con-
ducted on a set of Taillard’s benchmark instances (Taillard
1990). The problems size is from 20 × 5 to 500 × 20.

To compare the performance ofNCS, there are seven algo-
rithms involved as follows.

– The standard CS.
– Improved hybrid CS (IHCS) (Marichelvam 2012).
– An alternate two phases PSO (ATPPSO) (Zhang and Sun
2009).

– A hybrid ATPPSO (I-ATPPSO) (Zhang et al. 2010a).
– Genetic algorithm (GA) (Nearchou 2004).
– A novel PSO (NPSO) (Lian et al. 2008).
– The proposed NCS.

The parameter settings of the above six algorithms are
described as follows. For the standard CS, IHCS, and NCS,
the population size N and pa is set to 50 and 0.25, respec-
tively. For NCS, the probability of GOBL po is set to 0.1.
The parameters of GA, NPSO, ATPPSO and I-ATPPSO are
set according to descriptions of Zhang et al. (2010a). The
MaxGen is set to 500 for the standard CS IHCS, and NCS.
For other three algorithms, the MaxGen is set to 900 (Zhang
et al. 2010a).

For each algorithm, each test instance is conducted ten
trials, and the average relative difference (ARD) is calculated
as follows (Zhang et al. 2010a):

ARD = 100 × (Copt − CA)

Copt , (13)

where CA is the makespan obtained by the NCS algorithm
or other compared algorithms, and Copt is the known mini-
mum makespan for the problem or the lowest known upper
bound for Taillard’s instances. The ARD can measure the
performance of an algorithm. A smaller ARDmeans that the
algorithm is better.

All algorithms are encoded in VC++ 6.0 and run on an
Intel Core i7-4510U CPU 2.60GHz with 8.0GB Memory in
the Windows 7 Operating System.

5.2 Comparison of NCS with the standard CS and IHCS

In this section, we present the comparison of NCS with the
standard CS. Table 1 lists the computational results achieved
by the standard CS, IHCS, and NCS, where “Mean” indi-
cates the mean makespan, and ”ARD” is the average relative
difference. The better results are shown in bold. As seen, the

123

A new cuckoo search algorithm...

Table 1 Results achieved by
CS, IHCS and NCS

Problems Size CS IHCS NCS

Mean ARD Mean ARD Mean ARD

Ta010 20 × 5 1127.6 1.77 1117.1 0.82 1108 0.00

Ta020 20 × 10 1629.4 2.41 1618.2 1.71 1606 0.94

Ta030 20 × 20 2226.2 2.21 2220.4 1.95 2184 0.28

Ta040 50 × 5 2789.3 0.26 2784.1 0.08 2782 0.00

Ta050 50 × 10 3260.2 6.37 3168.4 3.37 3131.2 2.16

Ta060 50 × 20 4045.6 7.71 3908.5 4.06 3860.6 2.78

Ta070 100 × 5 5346.1 0.45 5339.3 0.33 5326 0.08

Ta080 100 × 10 6065.5 3.77 5912.6 1.16 5891.4 0.79

Ta090 100 × 20 7042.8 9.46 6641.2 3.22 6602.8 2.62

Ta100 200 × 10 11422.5 7.00 10789.2 1.07 10734 0.55

Ta110 100 × 20 12603.4 11.65 11762.4 4.2 11633.6 3.06

Ta120 500 × 20 27486.5 3.89 26973.6 1.95 26897.2 1.66

Total average 4.75 1.99 1.24

NCS outperforms the standard CS and IHCS on all twelve
test instances. The total average ARD of NCS is 1.24 %,
which is better than the standard CS (4.75 %) and IHCS
(1.99 %).

Fig. 5 lists the convergence plots of the standard CS, IHCS
and NCS on Ta010-Ta060. It can be seen that NCS con-
verges faster than the standard CS and IHCS. By combining
the NEH heuristic, IHCS shows faster convergence speed
than the standard CS. It seems that IHCS converges faster at
the beginning of the search. As the iteration increases, the
IHCS can hardly find more accurate solutions. By embed-
ding a local search operator into IHCS, it may achieve
better performance. That is why NCS performs better than
IHCS.

5.3 Comparison of NCS with GA, NPSO, ATPPSO and
I-ATPPSO

In this section, the proposed NCS is compared with GA,
NPSO, ATPPSO and I-ATPPSO on the twelve test instances.
Table 2 presents the computational results obtained by GA,
NPSO, ATPPSO, I-ATPPSO, and NCS, where “Mean” indi-
cates the mean makespan, and ”ARD” is the average relative
difference. The best results for each test instances are shown
in bold. Results of GA, NPSO, ATPPSO and I-ATPPSO are
taken from Table 4 in the literature (Zhang et al. 2010a). The
parameter setting of these algorithms can be found in Zhang
et al. (2010a).

As shown in Table 2, the proposed NCS achieves the best
results in terms of the overall solution quality. The NCS
obtains the smallest total average ARD (1.24 %), which is
better than GA (4.31%), ATPPSO (1.94%), NPSO (2.37%),
and I-ATPPSO (1.43 %). NCS outperforms other four algo-

rithms on all test instances except for Ta010 and Ta050. For
Ta010, both NCS and I-ATPPSO can find the global opti-
mum, while I-ATPPSO achieves better solutions than NCS
on Ta050.

To compare the performance of multiple algorithms
on all test instances, we conduct Friedman test accord-
ing to the suggestions of García et al. (2010). Table 3
shows the average ranking of GA, ATPPSO, NPSO, I-
ATPPSO, and NCS. The best ranking is shown in bold.
As seen, the performance of the five algorithms ranks as
follows: NCS, I-ATPPSO, ATPPSO, NPSO, and GA. The
best ranking is obtained by the proposed NCS algorithm. It
demonstrates that NCS is the best one among the five algo-
rithms.

To compare the performance differences between NCS
and the other four algorithms, we conduct a Wilcoxon test
based on the achieved ARD (García et al. 2010). Table 4
shows the resultant p-values when comparing among NCS
and the other four algorithms. The p-values below 0.05 are
shown in bold. From the results, it can be seen that NCS
is significantly better than GA, NPSO, ATPPSO, and I-
ATPPSO.

6 Conclusions

This paper presents a new cuckoo search algorithmwith local
search (NCS) for solving the permutation flow shop schedul-
ing problem. To handle the discrete variables, the SPV rule
is employed to convert continuous solutions into discrete job
permutations. For population initialization, the NEH heuris-
tic is used to generate high quality initial solutions. The
modified GOBL for discrete problems is utilized to acceler-

123

H. Wang et al.

(a)

(c)

(f)(e)

(d)

(b)

Fig. 5 The convergence characteristics of CS, IHCS and NCS on Ta010-Ta060

ate the convergence speed during the search. To improve the
exploitation ability ofCS, a local search strategy is employed.
Experiments are conducted on twelve representative Tail-
lard’s benchmark instances. Simulation results show that the

proposed NCS is significantly better than the standard CS,
IHCS, GA, NPSO, ATPPSO, and IATPPSO in terms of the
quality of solutions.

123

A new cuckoo search algorithm...

Table 2 Results achieved by GA, NPSO, ATPPSO, I-ATPPSO, and NCS

Problems Size GA NPSO ATPPSO I-ATPPSO NCS

Mean ARD Mean ARD Mean ARD Mean ARD Mean ARD

Ta010 20 × 5 1135.6 2.49 1115.4 0.67 1110.4 0.22 1108 0.00 1108 0.00

Ta020 20 × 10 1632.8 2.63 1621 1.89 1608.3 1.09 1608.8 1.12 1606 0.94

Ta030 20 × 20 2237.5 2.73 2215.1 1.70 2193.6 0.72 2184.7 0.31 2184 0.28

Ta040 50 × 5 2815.7 1.21 2783.2 0.04 2782.5 0.02 2782.2 0.01 2782 0.00

Ta050 50 × 10 3225.5 5.24 3171.7 3.48 3156.1 2.97 3129.5 2.10 3131.2 2.16

Ta060 50 × 20 4008.6 6.73 3959.8 5.43 3903.2 3.92 3881.3 3.34 3860.6 2.78

Ta070 100 × 5 5372.3 0.95 5345.8 0.45 5344.9 0.43 5335.4 0.25 5326 0.08

Ta080 100 × 10 6056.3 3.62 5914.5 1.19 5900.1 0.94 5898.6 0.92 5891.4 0.79

Ta090 100 × 20 6910.3 7.40 6723.3 4.50 6690.6 3.99 6604.7 2.65 6602.8 2.62

Ta100 200 × 10 11025.6 3.28 10796.9 1.14 10846.2 1.60 10744.5 0.65 10734 0.55

Ta110 200 × 20 12269.5 8.70 11832.1 4.82 11783 4.39 11707.5 3.72 11633.6 3.06

Ta120 500 × 20 28245 6.76 27282 3.12 27246.5 2.98 27017.7 2.12 26897.2 1.66

Total average 4.31 2.37 1.94 1.43 1.24

Table 3 Results achieved by
Friedman test

Algorithms Rankings

NCS 1.13

I-ATPPSO 1.96

ATPPSO 3.00

NPSO 3.92

GA 5.00

The best ranking (with the
lowest ranking value) is shown
in bold

Table 4 Results achieved by
Wilcoxon test

NCS vs. p-values

GA 2.22e–03

NPSO 2.22e–03

ATPPSO 2.21e–03

I-ATPPSO 9.89e–03

The p-values below 0.05 are
shown in bold

The GOBL is usually used for continuous optimization
problems, while we apply it to handle discrete variables in
this paper. Results show that the GOBL also works well on
discrete optimization problems. For the parameter po, we
use an empirical value. Our experiments show that a dynam-
ical po may be more suitable for solving different kinds of
problems. This will be investigated in the future work.

Acknowledgments This work is supported by the Priority Academic
Program Development of Jiangsu Higher Education Institutions, the
Humanity and Social Science Foundation of Ministry of Education of
China (No. 13YJCZH174), the National Natural Science Foundation of
China (Nos. 61305150 and 61261039), and the Natural Science Foun-
dation of Jiangxi Province (No. 20142BAB217020).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studieswith human
participants or animals performed by any of the authors.

References

AbdElazimSM,Ali ES (2016)Optimal power system stabilizers design
via cuckoo search algorithm. Int J Electr PowerEnergySyst 75:99–
107

Andreas C (2004) Nearchou. The effect of various operators on the
genetic search for large scheduling problems. International Journal
of Production Economics 88(2):191–203

Bansal SP (1977) Minimizing the sum of completion times of n jobs
over mmachines in a flowshopa branch and bound approach. AIIE
Trans. 9(3):306–311

Basu M, Chowdhury A (2013) Cuckoo search algorithm for economic
dispatch. Energy 60:99–108

Bhandari AK, Singh VK, Kumar A, Singh GK (2014) Cuckoo search
algorithm and wind driven optimization based study of satel-
lite image segmentation for multilevel thresholding using kapurs
entropy. Expert Syst Appl 41(7):3538–3560

Chen J, Lin Q, Hu Q (2010) Application of novel clonal algorithm in
multiobjective optimization. International Journal of Information
Technology & Decision Making 9(02):239–266

ChenB, ShuH, CoatrieuxG, ChenG, SunX,Coatrieux JL (2015) Color
image analysis by quaternion-type moments. J Math Imaging Vis
51(1):124–144

Croce FD, Ghirardi M, Tadei R (2002) An improved branch-and-bound
algorithm for the two machine total completion time flow shop
problem. Eur J Oper Res 139(2):293–301

Cui L, Li G, Lin Q, Chen J, Lu N (2016) Adaptive differential
evolution algorithmwith novelmutation strategies inmultiple sub-
populations. Comput Oper Res 67:155–173

Dhivya M, Sundarambal M (2011) Cuckoo search for data gathering in
wireless sensor networks. Int J Mob Commun 9(6):642–656

123

H. Wang et al.

Djelloul H, Layeb A, Chikhi S (2015) Quantum inspired cuckoo search
algorithm for graph colouring problem. Int J Bio-Inspired Comput
7(3):183–194

Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by
a colony of cooperating agents. IEEE Trans Syst Man Cybern Part
B Cybern 26(1):29–41

Fu Z, Sun X, Liu Q, Zhou L, Shu J (2015) Achieving efficient cloud
search services: multi-keyword ranked search over encrypted
cloud data supporting parallel computing. IEICE Trans Commun
E98–B(1):190–200

García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonpara-
metric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental
analysis of power. Inf Sci 180(10):2044–2064

Goel S, Sharma A, Bedi P (2013) Novel approaches for classification
basedon cuckoo search strategy. Int JHybrid Intell Syst 10(3):107–
116

GuB, ShengVS, TayKY, RomanoW, Li S (2015a) Incremental support
vector learning for ordinal regression. IEEE Trans Neural Netw
Learn Syst 26(7):1403–1416

Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015b) Incremental
learning for ν-support vector regression. Neural Netw 67:140–150

Huang J, Gao L, Li X (2015) An effective teaching-learning-based
cuckoo search algorithm for parameter optimization problems in
structure designing and machining processes. Appl Soft Comput
36:349–356

Ignall E, Schrage L (1965) Application of the branch and bound
technique to some flow-shop scheduling problems. Oper Res
13(3):400–412

Johnson SM (1954) Optimal two and three stage production schedules
with setup times included. Naval Res Logist Q 1(1):61–68

Karaboga D (2005) An idea based on honey bee swarm for numerical
optimization. Technical report, Technical report-tr06, ErciyesUni-
versity, Engineering Faculty, Computer Engineering Department

Karthikeyan S, Asokan P, Nickolas S, Page T (2015) A hybrid dis-
crete firefly algorithm for solving multi-objective flexible job shop
scheduling problems. Int J Bio-Inspired Comput 7(6):386–401

Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Int
Conf Neural Netw 4:1942–1948

Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-
move forgery detection scheme. IEEE Trans Inf Forensics Secur
10(3):507–518

Lian Z, Gu X, Jiao B (2008) A novel particle swarm optimiza-
tion algorithm for permutation flow-shop scheduling to minimize
makespan. Chaos Solitons Fractals 35(5):851–861

Liang J, Pan Q-K, Tiejun C, Wang L (2011) Solving the blocking
flow shop scheduling problem by a dynamic multi-swarm particle
swarm optimizer. Int J Adv Manuf Technol 55(5–8):755–762

Liang Z, Song R, Lin Q, Du Z, Chen J, Ming Z, Yu J (2015) A
double-module immune algorithm for multi-objective optimiza-
tion problems. App Soft Comput 35:161–174

LiangZ,Sun J,LinQ,DuZ,Chen J,MingZ (2016)Anovelmultiple rule
sets data classification algorithm based on ant colony algorithm.
Appl Soft Comput 38:1000–1011

Lin Q, Zhu Q, Huang P, Chen J, Ming Z, Yu J (2015a) A novel hybrid
multi-objective immune algorithm with adaptive differential evo-
lution. Comput Oper Res 62:95–111

Lin Q, Gao L, Li X, Zhang C (2015b) A hybrid backtracking search
algorithm for permutation flow-shop scheduling problem. Comput
Ind Eng 85:437–446

Lin Q, Chen J (2013) A novel micro-population immunemultiobjective
optimization algorithm. Comput Oper Res 40(6):1590–1601

Liu B, Wang L, Jin Y-H (2007) An effective pso-based memetic algo-
rithm for flow shop scheduling. IEEE Trans Sys Man Cybern Part
B Cybern 37(1):18–27

Li X, Yin M (2012) A discrete artificial bee colony algorithm with
composite mutation strategies for permutation flow shop schedul-
ing problem. Scientia Iranica 19(6):1921–1935

Li X, Yin M (2013a) A hybrid cuckoo search via Lévy flights for
the permutation flow shop scheduling problem. Int J Prod Res
51(16):4732–4754

Li X, Yin M (2013b) An opposition-based differential evolution algo-
rithm for permutation flow shop scheduling based on diversity
measure. Adv Eng Softw 55:10–31

Ma T, Zhou J, Tang M, Tian Y, Al-dhelaan A, Al-rodhann M, Lee
S (2015) Social network and tag sources based augmenting
collaborative recommender system. IEICE Trans Inf Syst E98–
D(4):902–910

Marichelvam MK (2012) An improved hybrid cuckoo search (ihcs)
metaheuristics algorithm for permutation flow shop scheduling
problems. Int J Bio-Inspired Comput 4(4):200–205

Masoud B, Hooshang J-R (2015) Robust data-driven soft sensor based
on iterativelyweighted least squares support vector regressionopti-
mized by the cuckoo optimization algorithm. J Nat Gas Sci Eng
22:35–41

Michael RG, David SJ (1979) Computers and intractability: a guide to
the theory of NP-completeness. WH Freeman & Co., San Fran-
cisco

Mladenović N,Hansen P (1997)Variable neighborhood search. Comput
Oper Res 24(11):1097–1100

NaikMK, PandaR (2016)A novel adaptive cuckoo search algorithm for
intrinsic discriminant analysis based face recognition. Appl Soft
Comput 38:661–675

Navimipour NJ (2015) Milani FS (2015) Task scheduling in the cloud
computing based on the cuckoo search algorithm. Int J Model
Optim 5(1):44

Nawaz M (1983) E Emory Enscore, and Inyong Ham. A heuristic algo-
rithm for the m-machine, n-job flow-shop sequencing problem.
Omega 11(1):91–95

Qian B, Wang L, Rong H, Wang W-L, Huang D-X, Wang X (2008)
A hybrid differential evolution method for permutation flow-shop
scheduling. Int J Adv Manuf Technol 38(7–8):757–777

Rahman HF (2015) Ruhul Sarker, and Daryl Essam. A real-time order
acceptance and scheduling approach for permutation flow shop
problems. Eur J Oper Res 247(2):488–503

Rahnamayan S, Tizhoosh HR, Salama M (2008) Opposition-based dif-
ferential evolution. Evol Comput IEEE Trans 12(1):64–79

Ren Y, Shen J, Wang J, Han J, Lee S (2015) Mutual verifiable provable
data auditing in public cloud storage. J Internet Technol 16(2):317–
323

Sajwan M, Acharya K, Bhargava S (2014) Swarm intelligence based
optimization for web usage mining in recommender system.
International Journal of Computer Applications Technology and
Research 3(2):119–124

Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing proto-
col providing good transmission reliability in underwater sensor
networks. J Internet Technol 16(1):171–178

Taillard E (1990) Some efficient heuristic methods for the flow shop
sequencing problem. Eur J Oper Res 47(1):65–74

Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G (2006) Parti-
cle swarm optimization and differential evolution for the sin-
gle machine total weighted tardiness problem. Int J Prod Res
44(22):4737–4754

Tasgetiren MF, Liang Y-C, Sevkli M, Gencyilmaz G (2007) A particle
swarm optimization algorithm for makespan and total flowtime
minimization in the permutation flowshop sequencing problem.
Eur J Oper Res 177(3):1930–1947

Tizhoosh HR (2005) Opposition-based learning: A new scheme for
machine intelligence. In: International conference on computa-
tional intelligence for modelling control and automation IEEE, pp
695–701

123

A new cuckoo search algorithm...

Wang H, Wu Z, Rahnamayan S (2011a) Enhanced opposition-based
differential evolution for solving high-dimensional continuous
optimization problems. Soft Comput 15(11):2127–2140

Wang H,Wu Z, Rahnamayan S, Liu Y, VentrescaM (2011b) Enhancing
particle swarm optimization using generalized opposition-based
learning. Inf Sci 181(20):4699–4714

Wang X, Tang L (2012) A discrete particle swarm optimization algo-
rithm with self-adaptive diversity control for the permutation
flowshop problem with blocking. Appl Soft Comput 12(2):652–
662

Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for
vehicle classification. Inf Sci 295:395–406

Wolpert DH, Macready WG (1997) No free lunch theorems for opti-
mization. IEEE Trans Evol Comput 1(1):67–82

Xia Z, Wang X, Sun X, Liu Q, Xiong N (2014a) Steganalysis of LSB
matching using differences between nonadjacent pixels.Multimed
Tools Appl. doi:10.1007/s11042-014-2381-8

Xia Z,WangX, SunX,WangB (2014b) Steganalysis of least significant
bit matching using multi-order differences. Secur Commun Netw
7(8):1283–1291

Xia Z, Wang X, Sun X, Wang Q (2015) A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data. IEEE
Trans Parallel Distrib Syst. doi:10.1109/TPDS.2015.2401003

Xie S, Wang Y (2014) Construction of tree network with limited deliv-
ery latency in homogeneous wireless sensor networks. Wireless
personal communications 78(1):231–246

Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World
congress on nature and biologically inspired computing IEEE, pp
210–214

Yang X-S (2010) Engineering optimization: an introduction with meta-
heuristic applications. Wiley, New York

Yang X-S, Deb S (2010) Engineering optimisation by cuckoo search.
Int J Math Model Numer Optim 1(4):330–343

Zhang C, Ning J, Ouyang D (2010a) A hybrid alternate two phases
particle swarm optimization algorithm for flow shop scheduling
problem. Comput Ind Eng 58(1):1–11

Zhang J, Zhang C, Liang S (2010b) The circular discrete particle swarm
optimization algorithm for flow shop scheduling problem. Expert
Syst Appl 37(8):5827–5834

Zhang C, Sun J (2009) An alternate two phases particle swarm opti-
mization algorithm for flow shop scheduling problem. Expert Syst
Appl 36(3):5162–5167

Zheng Y, Jeon B, Xu D, Wu QM, Zhang H (2015) Image segmentation
by generalized hierarchical fuzzyC-means algorithm. J Intel Fuzzy
Syst 28(2):961–973

Zhao F, Zhang J, Wang J, Zhang C (2015) A shuffled complex
evolution algorithm with opposition-based learning for a permu-
tation flow shop scheduling problem. Int J Comput Integr Manuf
28(11):1220–1235

123

http://dx.doi.org/10.1007/s11042-014-2381-8
http://dx.doi.org/10.1109/TPDS.2015.2401003

	A new cuckoo search algorithm with hybrid strategies for flow shop scheduling problems
	Abstract
	1 Introduction
	2 Problem descriptions
	3 Cuckoo search
	4 Proposed approach
	4.1 Solution representation
	4.2 Population initialization
	4.3 Generalized opposition-based learning
	4.4 Local search
	4.5 Framework of NCS

	5 Experimental study
	5.1 Experiment setup
	5.2 Comparison of NCS with the standard CS and IHCS
	5.3 Comparison of NCS with GA, NPSO, ATPPSO and I-ATPPSO

	6 Conclusions
	Acknowledgments
	References

